Ring-Opening Alternating Copolymerization of O-Carboxyanhydrides of Lactic Acid and Malic Acid Using Hafnium Alkoxide Initiators with Different Stereo Selectivities and Activities

Abstract
Monomer sequence controllable syntheses of copolymers, including copolyesters, remain a challenge in polymer science. Although alternating sequence-controlled copolymerization of O-carboxyanhydrides (OCAs) can be achieved via using syndioselective initiators, the alternating copolymerization of lactic acid-derived O-carboxyanhydride (LacOCA) with other monomers still suffers from a lack of highly syndioselective initiators. In this work, a highly syndioselective system for the ring-opening polymerization (ROP) of LacOCA was achieved using a bulky amine tris(phenolate) hafnium alkoxide initiator with a high Pr value of 0.91. However, the stereoselectivities of amine tris(phenolate) hafnium alkoxide initiators for the ROP of malic acid O-carboxyanhydride (MalOCA) change to be modestly or lowly isoselective. Interestingly, despite the different stereoselectivities of this system for the two different monomers, the high syndioselectivity of the initiator for the ROP of LacOCA and the low activity of MalOCA in the ROP allow comparatively high rates of cross-propagation; consequently, the ring-opening alternating copolymerization (ROAP) of LacOCA and MalOCA was achieved successfully.
Funding Information
  • National Natural Science Foundation of China (21671087 and 21771094)