Structural Behavior Evaluation of Reinforced Concrete Using the Fiber-Reinforced Polymer Strengthening Method

Abstract
Reinforced concrete (RC) structures age with time, which results in performance degradation and cracks. These performance degradations do not recover easily, but a performance higher than the existing structures can be expected through reinforcement. There are various reinforcement methods for RC structures. This study selected four reinforcement methods: near-surface mounting (NSM), external prestressing (EP), external bonding (EB), and section enlargement (SE). In the past, steel bars were often used as reinforcements. However, this study uses fiber-reinforced polymer (FRP), which is an alternative to steel bars owing to its high tensile strength, and its non-corrosive and lightweight properties. It is a basic strengthening material, along with a carbon-fiber-reinforced polymer (CFRP) and glass-fiber-reinforced polymer (GFRP) in bar and sheet forms. Various strengthening materials such as a CFRP, GFRP, and prestressing (PS) strand are applied to the NSM, EP, EB, and SE methods, followed by flexural experiments. In addition, changes in the ductility of the RC structures were examined. The concrete EP and near-surface mounting prestressing (NSM(P)) methods have a stiffness that is almost double the non-strengthened specimen. However, because the EP and EB methods are brittle, the NSM(P) method with ductile behavior is considered the most effective.
Funding Information
  • Ministry of Land, Infrastructure and Transport (17SCIP-B128496-01)