Influence of Friction on the Behavior and Performance of Prefabricated Timber–Bearing Glass Composite Systems

Abstract
The basic concept of seismic building design is to ensure the ductility and sufficient energy dissipation of the entire system. The combination of wood and bearing glass represents a design in which each material transmits the load, and with the mutual and simultaneous interaction of the constituent elements, it is also earthquake resistant. Such a system has been developed so that the glass directly relies on the wooden frame, which allows the load to be transferred by contact and the friction force between the two of materials. Within the seismic load, friction between glass and wood is an important factor that affects both the behavior and performance of a wood–glass composite system. The set-up system consists of a single specimen of laminated or insulating glass embedded between two CLT elements. The friction force was determined at the CLT–glass contact surface for a certain lateral pressure, i.e., normal force. Friction depends on the way the elements (especially glass) are processed, as well as on the lateral load introduced into the system. Conducted experimental research was accompanied by numerical analyses. Experimental research was confirmed by numerical simulations.
Funding Information
  • Croatian Science Foundation (IP-2016-06-3811)

This publication has 13 references indexed in Scilit: