Robust COX-2-mediated prostaglandin response may drive arthralgia and bone destruction in patients with chronic inflammation post-chikungunya

Abstract
Patients following infection by chikungunya virus (CHIKV) can suffer for months to years from arthralgia and arthritis. Interestingly, methotrexate (MTX) a major immune-regulatory drug has proved to be of clinical benefit. We have previously shown that CHIKV can persist in the joint of one patient 18 months post-infection and plausibly driving chronic joint inflammation but through ill-characterized mechanisms. We have pursued our investigations and report novel histological and in vitro data arguing for a plausible role of a COX-2-mediated inflammatory response post-CHIKV. In the joint, we found a robust COX-2 staining on endothelial cells, synovial fibroblasts and more prominently on multinucleated giant cells identified as CD11c+ osteoclasts known to be involved in bone destruction. The joint tissue was also strongly stained for CD3, CD8, CD45, CD14, CD68, CD31, CD34, MMP2, and VEGF (but not for NO synthase and two B cell markers). Dendritic cells were rarely detected. Primary human synovial fibroblasts were infected with CHIKV or stimulated either by the synthetic molecule polyriboinosinic:polyribocytidylic acid (PIC) to mimic chronic viral infection or cytokines. First, we found that PIC and CHIKV enhanced mRNA expression of COX-2. We further found that PIC but not CHIKV increased the mRNA levels of cPLA2α and of mPGES-1, two other central enzymes in PGE2 production. IFNβ upregulated cPLA2α and COX-2 transcription levels but failed to modulated mPGES-1 mRNA expression. Moreover, PIC, CHIKV and IFNβ decreased mRNA expression of the PGE2 degrading enzyme 15-PGDH. Interestingly, MTX failed to control the expression of all these enzymes. In sharp contrast, dexamethasone was able to control the capacity of pro-inflammatory cytokines, IL-1β as well as TNFα, to stimulate mRNA levels of cPLA2α, COX-2 and mPGES-1. These original data argue for a concerted action of CHIKV (including viral RNA) and cytokines plausibly released from recruited leukocytes to drive a major COX-2-mediated PGE2 proinflammatory responses to induce viral arthritis. It is important to have a better understanding of the immuno-pathogenesis of Chikungunya virus (CHIKV) and particularly focusing on the chronic phase associated to arthralgia and arthritis. Benefiting from our prospective cohort studies, we herein provide novel in vivo data identifying for the first time the implication of COX-2 and several other enzymes involved in prostaglandin biosynthesis and the persistence of the virus on the joint. Prostaglandin has major activities in inflammation and joint destruction. In vitro, we have used a model of human synovial fibroblasts to decipher the regulatory mechanisms of prostaglandin biosynthesis pathway. We have made important observations showing that the virus itself as well as major inflammatory cytokines can dramatically control the expression of all enzymes involved in the metabolism of prostaglandin. Interestingly, pharmacological investigations further revealed that dexamethasone, but not methotrexate (currently used to treat patients with chikungunya) may be of clinical values.
Funding Information
  • Conseil Régional de La Réunion (234277)
  • Regional Council of la Réunion (GURDTI 2017-1198-0002583, N° Synergie RE0002583)
  • Regional Council of la Réunion (GURDTI 2017-1198-0002583, N° Synergie RE0002583)