Ventilation Characteristics and Performance Evaluation of Different Window-Opening Forms in a Typical Office Room

Abstract
As most existing office buildings in China lack fresh air systems for ventilation, natural ventilation with windows remains the main means of improving indoor air quality and adjusting indoor thermal comfort. However, knowledge of the ventilation characteristics of various window-opening forms in actual buildings is limited and current methods for evaluating ventilation performance lack a comprehensive consideration of ventilation rate and thermal comfort. In this study, the ventilation characteristics of different window-opening forms were systematically compared by conducting computational fluid dynamics (CFD) simulations. A full-scale experiment was conducted in a typical office room in a university in Tianjin to validate the CFD simulation. Two ventilation modes (wind-driven cross-ventilation and temperature-driven single-sided ventilation), three window-opening angles, and seven window types were investigated. Additionally, the ratio of the ventilation rate to the absolute value of thermal sensation was used to quantify the indoor natural-ventilation performance. The results showed that a sliding window with a full opening has the highest discharge coefficients of 0.68 and 0.52 under wind-driven cross-ventilation and temperature-driven single-sided ventilation, respectively, and top-hung windows opening both inwards and outwards have better ventilation performance than other window types under the two ventilation modes. This study is applicable to the design and practice of natural ventilation.