Abstract
We describe the structure of finite solvable non-nilpotent groups in which every two strongly n-maximal subgroups are permutable (n = 2; 3). In particular, it is shown for a solvable non-nilpotent group G that any two strongly 2-maximal subgroups are permutable if and only if G is a Schmidt group with Abelian Sylow subgroups. We also prove the equivalence of the structure of non-nilpotent solvable groups with permutable 3-maximal subgroups and with permutable strongly 3-maximal subgroups. The last result allows us to classify all finite solvable groups with permutable strongly 3-maximal subgroups, and we describe 14 classes of groups with this property. The obtained results also prove the nilpotency of a finite solvable group with permutable strongly n -maximal subgroups if the number of prime divisors of the order of this group strictly exceeds n (n=2; 3).