Thermally reconfigurable monoclinic nematic colloidal fluids

Abstract
Fundamental relationships are believed to exist between the symmetries of building blocks and the condensed matter phases that they form1. For example, constituent molecular and colloidal rods and disks impart their uniaxial symmetry onto nematic liquid crystals, such as those used in displays1,2. Low-symmetry organizations could form in mixtures of rods and disks3,4,5, but entropy tends to phase-separate them at the molecular and colloidal scales, whereas strong elasticity-mediated interactions drive the formation of chains and crystals in nematic colloids6,7,8,9,10,11. To have a structure with few or no symmetry operations apart from trivial ones has so far been demonstrated to be a property of solids alone1, but not of their fully fluid condensed matter counterparts, even though such symmetries have been considered theoretically12,13,<a data-track="click" data-track-action="reference anchor" data-track-label="link"...