Dependence of the dielectric properties of barium titanate ceramics and a composite based on it on the sintering temperature

Abstract
In this paper, we compare the structure and dielectric properties of the samples of barium titanate ceramics that have been sintered at temperatures of 1100, 1150, 1200, 1250 and 1350 °C and dielectric characteristics of the samples of barium titanate (80 vol.%) — barium ferrite (20 vol.%). It is shown that only samples sintered at the temperature of 1250 and 1350 °C have polarization sufficient for the existence of the piezoelectric effect. For the same samples, the pyroelectric coefficient and reversal polarization significantly exceed those for samples sintered at lower temperatures. Analysis of the samples structure confirmed the dependence of the dielectric properties of the barium titanate ceramics on the grain size and, as a consequence, on the sintering temperature. Based on the studies carried out, the optimal temperature (1250 °С) for obtaining composite samples of barium titanate (80 vol.%) — barium ferrite (20 vol.%) was selected. The temperature dependence of the dielectric constant for the composite samples based on barium ferrite — barium titanate with a sintering temperature of 1250 °C is similar to the dependence for the BaTiO3 ceramic samples sintered at 1350 °C. At room temperatures, the permittivity of the composite samples is also significantly higher than that of the barium titanate ceramic samples obtained at the same sintering temperatures. The addition of barium ferrite to the barium titanate not only increased the permittivity of the composite, but also led to a diffusing of the ferroelectric phase transition and a shift in the temperature of the maximum of the dielectric constant by 10 degrees towards high temperatures.