A Population Genomic Investigation of Immune Cell Diversity and Phagocytic Capacity in a Butterfly

Abstract
Insects rely on their innate immune system to successfully mediate complex interactions with their internal microbiota, as well as the microbes present in the environment. Given the variation in microbes across habitats, the challenges to respond to them are likely to result in local adaptations in the immune system. Here we focus upon phagocytosis, a mechanism by which pathogens and foreign particles are engulfed in order to be contained, killed, and processed. We investigated the phenotypic and genetic variation related to phagocytosis in two allopatric populations of the butterfly Pieris napi. Populations were found to differ in their hemocyte composition and overall phagocytic capability, driven by the increased phagocytic propensity of each cell type. Yet, genes annotated to phagocytosis showed no large genomic signal of divergence. However, a gene set enrichment analysis on significantly divergent genes identified loci involved in glutamine metabolism, which recently have been linked to immune cell differentiation in mammals. Together these results suggest that heritable variation in phagocytic capacity arises via a quantitative trait architecture with variation in genes affecting the activation and/or differentiation of phagocytic cells, suggesting them as potential candidate genes underlying these phenotypic differences.
Funding Information
  • Vetenskapsrådet (2012-3715, 621-2012-4001, 2016-04077)
  • Knut och Alice Wallenbergs Stiftelse (2012.0058)