The Microstructure and Mechanical Properties of TA1-Low Alloy Steel Composite Plate Manufactured by Explosive Welding

Abstract
A TA1 (Ti alloy)/low alloy steel (LAS) composite plate was manufactured by explosive welding. The effects of the bonding interface microstructure on the mechanical properties and fracture behavior of the composite plate were investigated. The results show that the interface has a wavy structure with intermetallic compounds (IMCs) enclosed by a steel matrix. The metallurgical bonding interface was achieved by local diffusion, with a several micrometer-thick diffusion layer. Two kinds of microcracks were formed in the IMC region and the diffusion interface. Microcracks in the IMC region propagate with difficulty due to the impediment of the IMC/steel interface. The microcracks initiated at the interface need to propagate into the fine-grain steel matrix before crack connection and delamination. The shear strength of the TA1/LAS composite plate was over 350 MPa. The composite plate could be bent up to the equipment limit (135 degrees). Excellent mechanical properties were obtained since the crack propagation was hindered by the refined or elongated steel grains induced during explosive welding.
Funding Information
  • National Natural Science Foundation of China (51701051)
  • Natural Science Foundation of Heilongjiang Province (JC2017012)