Biosurfactants Produced by Phyllosphere-Colonizing Pseudomonads Impact Diesel Degradation but Not Colonization of Leaves of Gnotobiotic Arabidopsis thaliana

Abstract
Biosurfactant production is a common trait in leaf surface colonising bacteria that has been associated with increased survival and movement on leaves. At the same time the ability to degrade aliphatics is common in biosurfactant-producing leaf colonisers. Pseudomonads are common leaf colonisers and have been recognised for their ability to produce biosurfactants and degrade aliphatic compounds. In this study, we have investigated the role of biosurfactants in four non-plant plant pathogenic Pseudomonas strains by performing a series of experiments to characterise the surfactant properties, and their role during leaf colonisation and diesel degradation. The produced biosurfactants were identified using mass-spectrometry. Two strains produced viscosin-like biosurfactants and the other two produced Massetolide A-like biosurfactants which aligned with the phylogenetic relatedness between the strains. To further investigate the role of surfactant production, random Tn5 transposon mutagenesis was performed to generate knockout mutants. The knockout mutants were compared to their respective wild types in their ability to colonise gnotobiotic Arabidopsis thaliana and to degrade diesel or dodecane. It was not possible to detect negative effects during plant colonisation in direct competition or individual colonisation experiments. When grown on diesel, knockout mutants grew significantly slower compared to their respective wild types. When grown on dodecane, knockout mutants were less impacted compared to growth on diesel. By adding isolated wild type biosurfactants it was possible to complement the growth of the knockout mutants. Importance Many leaf colonising bacteria produce surfactants and are able to degrade aliphatic compounds, however, if surfactant production provides a competitive advantage during leaf colonisation is unclear. Furthermore, it is unclear if leaf colonisers take advantage of the aliphatic compounds that constitute the leaf cuticle and cuticular waxes. Here we test the effect of surfactant production on leaf colonisation and demonstrate that the lack of surfactant production decreases the ability to degrade aliphatic compounds. This indicates that leaf surface dwelling, surfactant producing bacteria contribute to degradation of environmental hydrocarbons and may be able to utilise leaf surface waxes. This has implications for plant-microbe interactions and future studies.