Partial Harvest in Paludified Black Spruce Stand: Short-Term Effects on Water Table and Variation in Stem Diameter

Abstract
The boreal forest is considered to be a low productivity forest due to its cold climate and poorly drained soils promoting paludification. These factors create conditions favouring accumulation of undecomposed organic matter, which causes declining growth rates of forest stands, ultimately converting mature stands into peatlands. Under these conditions, careful logging is conducted during winter, which minimizes soil disturbance in northwestern Quebec boreal forest. This results in water table rise, increased light availability and paludification. Our main objective was to evaluate the short-term effect of partial harvesting as an alternative method to careful logging in winter to mitigate water table rise on black spruce (Picea mariana [Mill.] B.S.P.) stands. We quantified tree stem diameter variation and daily variation in water table depth in mature spruce stands before and after partial harvest (basal area reduction of 40%) and girdling (same basal area reduction with delayed mortality) during 2016 and 2017 growing seasons. Water table variation prior to and following silvicultural treatments did not differ one year after treatment. Daily stem diameter variation in black spruce did not differ between treatments and control. Furthermore, temperature exerted a positive effect on variation in water table and on stem diameter. These results suggest that partial harvest could be more effective than clearcutting to mitigate negative effects of a high water table while limiting paludification.
Funding Information
  • Natural Sciences and Engineering Research Council of Canada (25K)
  • Mitacs (10K)