Effect of Modified Nano-Graphene Oxide and Silicon Carbide Nanoparticles on the Mechanical Properties and Durability of Artificial Stone Composites from Waste

Abstract
Sludge from stone-cutting (SSC) factories and stone mines cannot be used as decorative stones, stone powder, etc. These substances are left in the environment and cause environmental problems. This study aim is to produce artificial stone composite (ASC) using sludge from stone cutting factories, cement, unsaturated resin, water, silicon carbide nanoparticles (SiC-NPs), and nano-graphene oxide (NGO) as fillers. Nano graphene oxide has a hydrophobic plate structure that water is not absorbed due to the lack of surface tension on these plates. NGO has a significant effect on the properties of artificial stone due to its high specific surface area and low density in the composite. Its uniform distribution in ASC is very low due to its hydrophobicity, which can be modified by using unsaturated resin and silicon carbide nanoparticles (SiC-NPs). The obtained results show a remarkable increase and improvement in the mechanical properties of the artificial stone composite in the samples containing modified NGO with SiC-NPs. These samples have less porosity, smoother, more polished surface and, high bending and compressive strength. The addition of these materials to the artificial stone has increased durability and reduced costs and has caused water repellency, and prevented the penetration of harmful ions such as chloride, etc.

This publication has 25 references indexed in Scilit: