Appropriate-for-gestational-age infants who exhibit reduced antenatal growth velocity display postnatal catch-up growth

Abstract
Background Postnatally, small-for-gestational-age (SGA; birthweight = 10th centile), exhibit antenatal, intrapartum and postnatal indicators of UPI. Here, we examine if and when these infants (labelled as AGA-FGR) also demonstrate catch-up growth like SGA infants, when compared with AGA infants with normal antenatal growth velocity (AGA-NG). Methods We followed-up the infants of women who had previously undergone ultrasound assessment of fetal size at 28- and 36-weeks' gestation, enabling calculation of antenatal growth velocity. To assess postnatal growth, we asked parents to send their infant's growth measurements, up to two years post-birth, which are routinely collected through the state-wide Maternal-Child Health service. Infants with medical conditions affecting postnatal growth were excluded from the analysis. From the measurements obtained we calculated age-adjusted z-scores for postnatal weight, length and body mass index (BMI; weight(kg)/height(m(2))) at birth and 4, 8, 12, 18 and 24 months. We used linear spline regression modelling to predict mean weight, length and BMI z-scores at intervals post birth. Predicted mean age-adjusted z-scores were then compared between three groups; SGA, AGA with low antenatal growth (AGA-FGR; loss of >20 customised estimated fetal weight centiles), and AGA-NG to determine if catch-up growth occurred. In addition, we compared the rates of catch-up growth (defined as an increase in weight age-adjusted z-score of >= 0.67 over 1 year) between the groups with Fisher's exact tests. Results Of 158 (46%) infant growth records received, 146 were AGA, with low antenatal growth velocity occurring in 34/146 (23.2%). Rates of gestational diabetes and SGA birthweight were higher in those lost to follow-up. Compared to AGA-NG infants, AGA-FGR infants had significantly lower predicted mean weight (p<0.001), length (p = 0.04) and BMI (p = 0.001) z-scores at birth. These significant differences were no longer evident at 4 months, suggesting that catch-up growth had occurred. As expected, the catch-up growth that occurred among the AGA-FGR was not as great in magnitude as that demonstrated by the SGA. When assessed categorically, there was no significant difference between the rate of catch-up growth among the AGA-FGR and the SGA. Catch-up growth was significantly more frequent among both the AGA-FGR and the SGA groups compared to the AGA-NG. Conclusions AGA infants that have exhibited reduced antenatal fetal growth velocity also exhibit significant catch-up growth in the first 12 months of life. This finding represents further evidence that AGA fetuses that slow in growth during pregnancy do so due to UPI.
Funding Information
  • National Health and Medical Research Council (1065854)