Total Interpretive Structural Modelling of Graduate Employability Skills for the Built Environment Sector

Abstract
Contemporary practices and future projections in the Built Environment (BE) sector highlight an increasing demand on Higher Education Institutions (HEIs) to produce graduates possessing relevant skills aligned to meet workplace demands. This study aims to analyse the key skills influencing BE graduate employability in the United Kingdom (UK) for the benefit of HEIs. This investigation leverages on a critical review of extant literature and an elicitation of the perceptions of targeted macro, meso, and micro level key stakeholders in the BE sector to identify key employability skills. The Total Interpretive Structural Modelling (TISM) technique was used to analyse the contextual interrelationships among the identified skills to develop a hierarchical model that provides HEI with insight for BE curriculum development. Six key employability skillsets hierarchically modelled into four levels were identified as crucial for potential graduates to successfully attract and adapt to contemporary practices in the Built Environment sector. Findings reveal communication and team-working skills as critical, independent skills driving the successful development of the remaining four skillsets. This research extends the literature on employability skills by investigating the interactions of various skills that predominantly predicts graduate employability in the Built Environment sector. The resulting TISM skills model provides hierarchical and logical interdependencies beneficial to assist HEIs to strategically design BE curricular to enhance graduate employability.