Anti-VEGF Treatment Enhances CD8+ T-cell Antitumor Activity by Amplifying Hypoxia

Abstract
Anti-angiogenic therapies that target the vascular endothelial growth factor (VEGF) pathway have been used clinically to combat cancer for over a decade. Beyond having a direct impact on blood vessel development and tumor perfusion, accumulating evidence indicates that these agents also affect antitumor immune responses. Numerous clinical trials combining anti-angiogenic drugs with immunotherapies for the treatment of cancer are ongoing, but a mechanistic understanding of how disruption of tumor angiogenesis may impact immunity is not fully discerned. Here we reveal that blockade of VEGF-A with a monoclonal antibody to VEGF augments activation of CD8+ T cells within tumors and potentiates their capacity to produce cytokines. We demonstrate that this phenomenon relies on the disruption of VEGFR2 signaling in the tumor microenvironment, but does not affect CD8+ T cells directly. Instead, the augmented functional capacity of CD8+ T cells stems from increased tumor hypoxia that initiates a hypoxia-inducible factor-1α (HIF-1α) program within CD8+ T cells that directly enhances cytokine production. Lastly, combinatorial administration of anti-VEGF with an immunotherapeutic antibody, anti-OX40, improved antitumor activity over single-agent treatments. Our findings illustrate that anti-VEGF treatment enhances CD8+ T-cell effector function and provides a mechanistic rationale for combining anti-angiogenic and immunotherapeutic drugs for cancer treatment.
Funding Information
  • Genentech

This publication has 62 references indexed in Scilit: