An Assessment of Age and Gender Characteristics of Mixed Traffic with Autonomous and Manual Vehicles: A Cellular Automata Approach

Abstract
Traffic congestion has become increasingly prevalent in many urban areas, and researchers are continuously looking into new ways to resolve this pertinent issue. Autonomous vehicles are one of the technologies expected to revolutionize transportation systems. To this very day, there are limited studies focused on the impact of autonomous vehicles in heterogeneous traffic flow in terms of different driving modes (manual and self-driving). Autonomous vehicles in the near future will be running parallel with manual vehicles, and drivers will have different characteristics and attributes. Previous studies that have focused on the impact of autonomous vehicles in these conditions are scarce. This paper proposes a new cellular automata model to address this issue, where different autonomous vehicles (cars and buses) and manual vehicles (cars and buses) are compared in terms of fundamental traffic parameters. Manual cars are further divided into subcategories on the basis of age groups and gender. Each category has its own distinct attributes, which make it different from the others. This is done in order to obtain a simulation as close as possible to a real-world scenario. Furthermore, different lane-changing behavior patterns have been modeled for autonomous and manual vehicles. Subsequently, different scenarios with different compositions are simulated to investigate the impact of autonomous vehicles on traffic flow in heterogeneous conditions. The results suggest that autonomous vehicles can raise the flow rate of any network considerably despite the running heterogeneous traffic flow.