Fast and Realistic Reflections Using Screen Space and GPU Ray Tracing—A Case Study on Rigid and Deformable Body Simulations

Abstract
The realistic representation of light within a computational domain is not a trivial task. Although several rendering approaches exist, the ray tracing technique is highly regarded as robust and realistic; however, its computational cost is still prohibitive for real-time games and other 3D applications. A modern tradeoff is to pair the ray tracing with the rasterization step, the former being responsible for generating complex lighting interactions, such as reflections, while the latter is used to generate less demanding visual effects, such as diffuse lighting and shadows. The stated framework has been studied by several authors, but it has not been shown to work both efficiently and accurately for highly dynamic scenes with deformable geometry. Stepping in this direction, this work presents a case study whose goal is to generate fast and realistic reflections on rigid and deformable body simulations using a hybrid approach that brings together the Screen Space technique with the GPU ray tracing algorithm and their respective main capabilities. The results show that not only realistic reflections can be generated at interactive rates, but also that the hybrid approach allows to achieve a certain level of scalability with respect to the number of triangles updated on every frame during the simulations.
Funding Information
  • Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (88881.120921/2016-01)

This publication has 13 references indexed in Scilit: