Data-driven prediction of the equivalent sand-grain height in rough-wall turbulent flows

Abstract
This paper investigates a long-standing question about the effect of surface roughness on turbulent flow: What is the equivalent roughness sand-grain height for a given roughness topography? Deep neural network (DNN) and Gaussian process regression (GPR) machine learning approaches are used to develop a high-fidelity prediction approach of the Nikuradse equivalent sand-grain height with an average error of less than 10 % and a maximum error of less than 30 %, which appears to be significantly more accurate than existing prediction formulae. They also identified the surface porosity and the effective slope of roughness in the spanwise direction as important factors in drag prediction.