Modeling Operational Parameters for Uranium Dioxide Production Reactor through Uranium Trioxide Reaction Using Hydrogen

Abstract
This article shows the modeling of a uranium dioxide production reactor using COMSOL Multiphysics software program in its 4.3b version. The model was made using 3 kinds of studies: momentum, heat and mass transport, in order to determine the influence of the most important operational parameters: UO3 reaction rate, composition and flow of the reduction gas, the initial temperature reactor and the reducing gas. The operational parameters evaluated were the followings: constant gas flow of2.5 L/min, initial hydrogen concentration of 0.25, 0.50 and0.75 M, and initial temperature of 400°C. The obtained results allow to conclude that under these working conditions, uranium dioxide is obtained virtually instantaneous and, with concentrations close to 0.5 M H2 in the reducing gas, the process can operate continuously and autogenously, without applying additional energy and temperatures around 600°C.

This publication has 1 reference indexed in Scilit: