Vibration Frequency Characteristic Study of Two-stage Excitation Valve Used in Vibration Experiment System

Abstract
To satisfy the demands of higher frequency and amplitude in hydraulic vibration experiment system, the two-stage excitation valve is presented, and a mathematical model of two-stage excitation valve is established after analyzing the working principle of two-stage excitation valve, then the influence of relevant parameters on the displacement of main spool of two-stage excitation valve is studied by using Matlab/Simulink to calculate and analyze. The results show that the displacement of main spool will be smaller with bigger diameter and more secondary valve ports. When the reversing frequency is higher and the oil supply pressure is lower as well as the axial guide width of valve ports is smaller, the maximum displacement of main spool is smaller. The new two-stage excitation valve is easy to adjust reversing frequency and flow. The high frequency can be achieved by improving the rotation speed of servo motor and adding the number of secondary valve ports; the large flow can be realized by increasing the axial guide width of secondary valve ports and oil supply pressure. The result of this study is of guiding significance for designing the rotary valve for the achievement of higher reversing frequency and larger flow.