Initial Rotor Position Detection for Permanent Magnet Synchronous Motor Based on High-Frequency Voltage Injection without Filter

Abstract
The accurate initial rotor position of a permanent magnet synchronous motor (PMSM) is necessary for starting the motor, and for the position sensorless control method adopted by a PMSM control system under some working conditions. This paper presents a new method to detect the initial rotor position of a permanent magnet synchronous motor (PMSM). The method does not need a low-pass filter, and has strong robustness and a simple calculation method. According to the relationship between high-frequency current response and rotor position angle θ, the rotor position angle can be obtained by arctangent and linear formulae. Finally, the magnetic polarity of the rotor is distinguished according to the change of inductance. In this method, the arctangent function is used to eliminate the filtering process and reduce the influence of the parameter deviation of the motor system on the detection accuracy of the initial position. The experimental results verify the correctness of the theoretical analysis and the effectiveness of the method.