STUDY ON EXCESS PORE WATER PRESSURE CHANGES OF SATURATED SOFT CLAY SUBJECTED TO UNDRAINED UNI-DIRECTIONAL AND MULTI-DIRECTIONAL CYCLIC SIMPLE SHEARS

Abstract
In this paper, normally consolidated specimens of kaolinite clay were tested under undrained uni-directional and multi-directional cyclic simple shears. It is shown from the test results that shear strain amplitude (γ), cyclic shear direction (phase difference (θ)) and the number of cycles (n) have significant effects on the changes of excess pore water pressure during cyclic shearing. However, the effect of cyclic shear direction on the excess pore water pressure can be eliminated by using a new parameter - cumulative shear strain (G*). Conventional estimation method of excess pore water pressure can not be used for the case of multi-directional cyclic shear with the number of cycles larger than 50 (n > 50). Consequently, a new estimation method, which is a function of cumulative shear strain was proposed. This method can be applied to various experimental conditions including uni-directional and multi-directional cyclic simples shear with different shear strain amplitudes and number of cycles.