Isolation of Nanocellulose from Cotton Cellulose and Computer Modeling of Its Structure

Abstract
Nanocellulose is a new class of derivatives of cellulose, which is characterized by high crystallinity, surface area, degree of dispersion, ability to decomposition by microorganisms and etc. There is high attention solving problems of obtaining nanocellulose and its application as high quality filler for polymers, biodegradable materials, additives for papers, clotting dispersion and etc. Obtaining of particles of nanosized nanostructure on the base cellulose, studying of processes of their formation, properties and creation nanotechnology on this basis give the chance to obtain materials with unique properties. In this work nanocellulose was obtained from cotton cellulose by hydrolysis with sulfuric acid, ultrasonic dispersion and microwave irradiation. The properties and structure of nanocellulose are investigated by AFM, IR-spectroscopic, X-ray methods. Nanocellulose has rod-like shape with sizes 50 - 300 nm in length and 10 - 40 nm in diameters and spherical shape with sizes 50 - 300 nm depending on the synthesis conditions of obtaining. Quantum-chemical methods have been used to calculate the electronic characteristics of nanocellulose; the change in the energy difference between HOMO and LUMO is shown, showing the change in reactivity and the manifestation of specific properties.