A clinical phase I dose-finding design with adaptive shrinking boundaries for drug combination trials

Abstract
Combinations of drugs are becoming increasingly common in oncology treatment. In some cases, patients can benefit from the interaction between two drugs, although there is usually a higher risk of developing toxicity. Due to drug–drug interactions, multidrug combinations often exhibit different toxicity profiles than those of single drugs, leading to a complex trial scenario. Numerous methods have been proposed for the design of phase I drug combination trials. For example, the two-dimensional Bayesian optimal interval design for combination drug (BOINcomb) is simple to implement and has desirable performance. However, in scenarios where the lowest and starting dose is close to being toxic, the BOINcomb design may tend to allocate more patients to overly toxic doses, and select an overly toxic dose combination as the maximum tolerated dose combination. To improve the performance of BOINcomb in the above extreme scenarios, we widen the range of variation of the boundaries by setting the self-shrinking dose escalation and de-escalation boundaries. We refer to the new design as adaptive shrinking Bayesian optimal interval design for combination drug (asBOINcomb). We conduct a simulation study to evaluate the performance of the proposed design using a real clinical trial example. Our simulation results show that asBOINcomb is more accurate and stable than BOINcomb, especially in some extreme scenarios. Specifically, in all ten scenarios, the percentage of correct selection is higher than the BOINcomb design within 30 to 60 patients. The proposed asBOINcomb design is transparent and simple to implement and can reduce the trial sample size while maintaining accuracy compared with the BOINcomb design.