A Study on Approaches for Measuring Outstanding Stress

Abstract
Enduring stresses are one of the key factors in shaping the engineering belongings of parts and structural constituents. This fact plays a momentous role, for example, in fatigue of welded elements. Many different procedures and distinctions of means for measuring residual stresses have been advanced to ensemble various specimen geometries and measurement purposes. The several specific methods have grew over several decades and their practical applications have greatly benefited from the development of complementary technologies, notably in material cutting, full-field deformation measurement techniques, numerical methods and computing power. These matching technologies have stimulated advances not only in measurement accuracy and reliability, but also in range of application; much greater detail in residual stresses measurement is now available. The purpose of this review is to classify the different methods and to provide an overview of some of the recent advances in the area of residual stress measurement and act as a summary document to aid technique selection between destructive, semi destructive and non- destructive techniques for residual stresses. For each method scope, physical limitation, advantages and disadvantages are summarized. In the end this paper indicates some promising directions for futuredevelopments.