Glycyrrhetinic acid modified MOFs for the treatment of liver cancer

Abstract
Liver cancer remains a major cause of cancer-related death across the globe. Nano medicines have emerged as promising candidates to improve liver cancer chemotherapy. In this study, a glycyrrhetinic acid (GA) modified metal-organic framework-based drug delivery system (GA-MOFs) was developed to enhance the liver targeting ability of 5-FU. The physicochemical properties of GA-MOFs regarding particle size, size distribution and morphology were evaluated. The results showed that the obtained 5-FU@GA-MOFs had an octahedral structure, a uniform particle size distribution, and a diameter of similar to 200 nm. In vitro release experiments demonstrated that 5-FU@GA-MOFs exhibited a pH-dependent release pattern. MTT assays indicated that 5-FU-loaded GA-MOFs showed greater cytotoxicity towards HepG2 cells when compared to 5-FU alone at the same dose. In vivo tissue distribution demonstrated that the 5-FU@GA-MOFs significantly increased the accumulation of 5-FU in the liver. In vivo imaging analysis further manifested the liver targeting ability of GA-MOFs. Taken together, these results suggested that GA-modified MOFs showed promising potential as liver-targeting nanocarriers for the delivery of anti-tumor drugs.
Funding Information
  • Natural Science Foundation of Liaoning Province (20180510016, 2019-MS-153)