Kinetic and fluid simulations of parallel electron transport during equilibria and transients in the scrape-off layer

Abstract
We present the first parallel electron transport results obtained using the newly developed 1D transport code SOL-KiT. With the capability to switch between consistent kinetic and fluid models for the electrons, we explore and report the differences in both equilibrium and transient simulations. Significant kinetic effects are found during transients, especially in the behaviour of the electron sheath heat transmission coefficient, which shows up to an eightfold increase. Equilibria are obtained for an input power scan with parameters relevant to medium size tokamaks. Detached equilibria are found to persist to higher input powers when electrons are treated kinetically. Furthermore, non-monotonic behaviour of the electron sheath heat transmission coefficient is observed in the power scan, with values being up to 40% above the classical value. We discuss the implications of the presented results to potential modelling decisions, as well as possible extensions to the used model.
Funding Information
  • Imperial College London (N/A)
  • Research Councils UK (EP/T012250/1)