FPGA Based Hardware Co-Simulation of an Area and Power Efficient FIR Filter for Wireless Communication Systems

Abstract
“In this paper FPGA based hardware co-simulation of an area and power efficient FIR filter for wireless communication systems is presented. The implementation is based on distributed arithmetic (DA) which substitutes multiply-and-accumulate operations with look up table (LUT) accesses. Parallel Distributed arithmetic (PDA) look up table approach is used to implement an FIR Filter taking optimal advantage of the look up table structure of FPGA using VHDL. The proposed design is hardware co-simulated using System Generator10.1, synthesized with Xilinx ISE 10.1 software, and implemented on Virtex-4 based xc4vlx25-10ff668 target device. Results show that the proposed design operates at 17.5 MHz throughput and consumes 0.468W power with considerable reduction in required resources to implement the design as compared to Coregen and add/shift based design styles. Due to this reduction in required resources the proposed design can also be implemented on Spartan-3 FPGA device to provide cost effective solution for DSP and wireless communication applications.”