An Extenics-Based Scheduled Configuration Methodology for Low-Carbon Product Design in Consideration of Contradictory Problem Solving

Abstract
Low-carbon product design involves a redesign process that requires not only structural module modification, but more importantly, generating innovative principles to solve design contradictions. Such contradictions include when current design conditions cannot satisfy design requirements or there are antithetical design goals. On the other hand, configuration tasks in the reconfiguration process are interdependent, which requires a well-scheduled arrangement to reduce feedback information. This study proposes an effective configuration methodology for low-carbon design. Firstly, configuration tasks and configuration parameters are designated through quality characteristics, and the directed network along with the associated values of configuration tasks are transformed into the design structure matrix to construct the information flow diagram. Then, the Extenics-based problem-solving model is presented to address design contradictions: low-carbon incompatibility and antithetical problems are clarified and formulated with a basic-element model; extensible and conjugate analysis tools are used to identify problematic structures and provide feasible measures; the Gantt chart of measures execution based on the information flow diagram is constructed to reduce feedback and generate robust schemes with strategy models. The methodology is applied to the vacuum pump low-carbon design, the results show that it effectively solves contradictions with innovative design schemes, and comparative analysis verifies the performance of Extenics.
Funding Information
  • National Natural Science Foundation of China (51875524, 52005444)
  • Zhejiang Province Public Welfare Technology Application Research Project (LGG19F020005)
  • Zhejiang Province Postdoctoral Research Foundation (zj2019130)