Sustainable Nanosheet Antioxidants for Sepsis Therapy via Scavenging Intracellular Reactive Oxygen and Nitrogen Species

Abstract
Sepsis is an aberrant systemic inflammatory response mediated by excessive production of reactive oxygen species (ROS) and reactive nitrogen species (RNS). Developing an efficient antioxidant therapy for sepsis via scavenging ROS and RNS remains a big challenge owing to insufficient activity and sustainability of conventional antioxidants. Herein, biocompatible transition metal dichalcogenide antioxidants with excellent scavenging activity and sustainability for H2O2, O2•-, OH and nitric oxide are developed for effective sepsis treatment. WS2, MoSe2, and WSe2 nanosheets exfoliated and functionalized with a biocompatible polymer effectively scavenge mitochondrial and intracellular ROS and RNS in inflammatory cells. Among the nanosheets, WS2 most efficiently suppresses the excessive secretion of inflammatory cytokines along with scavenging ROS and RNS without affecting the expression levels of the anti-inflammatory cytokine and ROS-producing enzymes. The WS2 nanosheets significantly improve the survival rate up to 90% for severely septic mice by reducing systemic inflammation. The pharmacokinetics suggests that the WS2 nanosheets can be excreted from mice three days after intravenous injection. This work demonstrates the potential of therapeutic nanosheet antioxidants for effective treatment of ROS and RNS-related diseases.
Funding Information
  • Korea Health Industry Development Institute (HP20C0006)
  • National Research Foundation of Korea (2017R1A2B2008455, 2019R1I1A2A01064237)