Distribution of tiger salamanders in northern Sonora, Mexico: comparison of sampling methods and possible implications for an endangered subspecies

Abstract
Many aquatic species in the arid USA-Mexico borderlands region are imperiled, but limited information on distributions and threats often hinders management. To provide information on the distribution of the Western Tiger Salamander (Ambystoma mavortium), including the USA-federally endangered Sonoran Tiger Salamander (Ambystoma mavortium stebbinsi), we used traditional (seines, dip-nets) and modern (environmental DNA [eDNA]) methods to sample 91 waterbodies in northern Sonora, Mexico, during 2015-2018. The endemic Sonoran Tiger Salamander is threatened by introgressive hybridization and potential replacement by another sub-species of the Western Tiger Salamander, the non-native Barred Tiger Salamander (A. m. mavortium). Based on occupancy models that accounted for imperfect detection, eDNA sampling provided a similar detection probability (0.82 [95% CI: 0.56-0.94]) as seining (0.83 [0.46-0.96]) and much higher detection than dip-netting (0.09 [0.02-0.23]). Volume of water filtered had little effect on detection, possibly because turbid sites had greater densities of salamanders. Salamanders were estimated to occur at 51 sites in 3 river drainages in Sonora. These results indicate tiger salamanders are much more widespread in northern Sonora than previously documented, perhaps aided by changes in land and water management practices. However, because the two subspecies of salamanders cannot be reliably distinguished based on morphology or eDNA methods that are based on mitochondrial DNA, we are uncertain if we detected only native genotypes or if we documented recent invasion of the area by the non-native sub-species. Thus, there is an urgent need for methods to reliably distinguish the subspecies so managers can identify appropriate interventions. Many aquatic species in the arid USA-Mexico borderlands region are imperiled, but limited information on distributions and threats often hinders management. To provide information on the distribution of the Western Tiger Salamander (Ambystoma mavortium), including the USA-federally endangered Sonoran Tiger Salamander (Ambystoma mavortium stebbinsi), we used traditional (seines, dip-nets) and modern (environmental DNA [eDNA]) methods to sample 91 waterbodies in northern Sonora, Mexico, during 2015-2018. The endemic Sonoran Tiger Salamander is threatened by introgressive hybridization and potential replacement by another sub-species of the Western Tiger Salamander, the non-native Barred Tiger Salamander (A. m. mavortium). Based on occupancy models that accounted for imperfect detection, eDNA sampling provided a similar detection probability (0.82 [95% CI: 0.56-0.94]) as seining (0.83 [0.46-0.96]) and much higher detection than dip-netting (0.09 [0.02-0.23]). Volume of water filtered had little effect on detection, possibly because turbid sites had greater densities of salamanders. Salamanders were estimated to occur at 51 sites in 3 river drainages in Sonora. These results indicate tiger salamanders are much more widespread in northern Sonora than previously documented, perhaps aided by changes in land and water management practices. However, because the two subspecies of salamanders cannot be reliably distinguished based on morphology or eDNA methods that are based on mitochondrial DNA, we are uncertain if we detected only native genotypes or if we documented recent invasion of the area by the non-native sub-species. Thus, there is an urgent need for methods to reliably distinguish the subspecies so managers can identify appropriate interventions.