Abstract
The ex vitro acclimatization and greenhouse periods play a significant role for the in vitro originated plantlets. In these stages, the micropropagated plantlets have to rapidly adapt to environmental changes. Rhynchostylis gigantea is widely in vitro produced due to highly aesthetic and economic value. The aim of this work was to update the physiological changes of micropropagated R. gigantea plantlets during ex vitro acclimatization and greenhouse stages. The analysis results showed that leaf water content was significantly decreased at day 14 (90.36%) and day 28 (90.17%) stages but increased at day 84 (92.52%) and day 140 (92.34%) stages in compared to in vitro stages, day 0 (92.7%). Dry matter content was changing in the opposite direction to the leaf water content with the highest values at day 14 (9.63%) and day 28 (9.83%), respectively. The leaf transpiration rate was the highest at day zero (0.146 g/dm2/h) in compared to all other studied points. Oppositively, GPX activity was the lowest in plantlets at day zero (13.2 UI/g fresh leaf ) and the highest in planlets at day 14 (36,4 UI/g fresh leaf ). The leaf proline content was higher at day 7 and day 14 stages (132.3 and 150.8 m g/g fresh leaf, respectively) but lower at day 84 and day 140 stages (44.3 and 53.3 microgram/g fresh leaf, respectively) than at day zero (73.7 microgram/g fresh leaf ).