Abstract
Cytochrome c (cyt c) is an electron transporter of the mitochondrial respiratory chain. Upon permeabilization of the mitochondrial outer membrane, cyt c is released into the cytoplasm, where it triggers the intrinsic pathway of apoptosis. Cytoplasmic cyt c can further reach the bloodstream. Apoptosis inhibition is one of the hallmarks of cancer and its induction in tumors is a widely used therapeutic approach. Apoptosis inhibition and induction correlate with decreased and increased serum levels of cyt c, respectively. The quantification of cyt c in the serum is useful in the monitoring of patient response to chemotherapy, with potential prognosis value. Several highly sensitive biosensors have been developed for the quantification of cyt c levels in human serum. Moreover, the delivery of exogenous cyt c to the cytoplasm of cancer cells is an effective approach for inducing their apoptosis. Similarly, several protein-based and nanoparticle-based systems have been developed for the therapeutic delivery of cyt c to cancer cells. As such, cyt c is a human protein with promising value in cancer prognosis and therapy. In addition, its thermal stability can be extended through PEGylation and ionic liquid storage. These processes could contribute to enhancing its therapeutic exploitation in clinical facilities with limited refrigeration conditions. Here, I discuss these research lines and how their timely conjunction can advance cancer therapy and prognosis.