Determination of a novel parvovirus pathogen associated with massive mortality in adult tilapia

Abstract
Tilapia is one of the most important economic and fastest-growing species in aquaculture worldwide. In 2015, an epidemic associated with severe mortality occurred in adult tilapia in Hubei, China. The causative pathogen was identified as Tilapia parvovirus (TiPV) by virus isolation, electron microscopy, experimental challenge, In situ hybridization (ISH), indirect immunofluorescence (IFA), and viral gene sequencing. Electron microscopy revealed large numbers of parvovirus particles in the organs of diseased fish, including kidney, spleen, liver, heart, brain, gill, intestine, etc. The virions were spherical in shape, non-enveloped and approximately 30nm in diameter. The TiPV was isolated and propagated in tilapia brain cells (TiB) and induced a typical cytopathic effect (CPE) after 3 days post-infection (dpi). This virus was used to experimentally infect adult tilapia and clinical disease symptoms similar to those observed naturally were replicated. Additionally, the results of ISH and IFA showed positive signals in kidney and spleen tissues from TiPV-infected fish. To identify TiPV-specific sequences, the near complete genome of TiPV was obtained and determined to be 4269 bp in size. Phylogenetic analysis of the NS1 sequence revealed that TiPV is a novel parvovirus, forms a separate branch in proposed genus Chapparvovirus of Parvoviridae. Results presented here confirm that TiPV is a novel parvovirus pathogen that can cause massive mortality in adult tilapia. This provides a basis for the further studies to define the epidemiology, pathology, diagnosis, prevention and treatment of this emerging viral disease. A novel parvovirus isolated from adult tilapia causes substantial morbidity and mortality. Using a SISPA-PCR and RACE, we identified and characterized 4269 nucleotides of this parvovirus. Tentatively named Tilapia parvovirus (TiPV), this is to our knowledge the first putative member of the family Parvoviridae shown to infect a teleost host. We found that a nucleotide sequence similarity search by BLASTX had no significant matches with other viruses, while amino acid sequence comparison indicated approximately 34.6% ~ 50.0% amino acids (aa) homology with other parvoviruses. Similarities between the genomes of parvoviruses infecting hosts in different phyla or divisions indicate a need to update previously suggested hypotheses on the origins of parvovirus. Our findings may represent new avenues to explain viral evolution and suggest a need to further study parvovirus pathogenesis.
Funding Information
  • the China Agriculture Research System (Grant No. CARS-46 and CARS-49)
  • National Key R&D Program of China (2019YFD0900105 and 2019YFD0900102)