Calmodulin acts as a state-dependent switch to control a cardiac potassium channel opening

Abstract
Calmodulin (CaM) and phosphatidylinositol 4,5-bisphosphate (PIP2) are potent regulators of the voltage-gated potassium channel KCNQ1 (K(v)7.1), which conducts the cardiac I-Ks current. Although cryo-electron microscopy structures revealed intricate interactions between the KCNQ1 voltage-sensing domain (VSD), CaM, and PIP2, the functional consequences of these interactions remain unknown. Here, we show that CaM-VSD interactions act as a state-dependent switch to control KCNQ1 pore opening. Combined electrophysiology and molecular dynamics network analysis suggest that VSD transition into the fully activated state allows PIP 2 to compete with CaM for binding to VSD. This leads to conformational changes that alter VSD-pore coupling to stabilize open states. We identify a motif in the KCNQ1 cytosolic domain, which works downstream of CaM-VSD interactions to facilitate the conformational change. Our findings suggest a gating mechanism that integrates PIP2 and CaM in KCNQ1 voltage-dependent activation, yielding insights into how KCNQ1 gains the phenotypes critical for its physiological function.
Funding Information
  • National Heart, Lung, and Blood Institute (R01HL126774)
  • National Heart, Lung, and Blood Institute (F30HL151042)
  • National Institute of Neurological Disorders and Stroke (R01NS092570)
  • Science for Life Laboratory
  • Göran Gustafssons Foundation

This publication has 64 references indexed in Scilit: