Heat and Mass Transfer of Hydrodynamic Boundary Layer Flow along a Flat Plate with the Influence of Variable Temperature and Viscous Dissipation

Abstract
This paper elucidates heat together with mass transfer through a flat plate and variable temperature as well as dissipative effects. The flow assumptions resulted to steady flow equations which were simplified with appropriate similarity variables. The simplified equations were numerically solved and results are presented both in graphs and tabular form. Effects of physical quantities of interest were presented graphically. The local skin friction is observed to increase because of increase in Schmidt number. Also, increase in Prandtl number is found to boast the local Nusselt number. The behaviour of increase in Prandtl number is found to be unstable within the boundary layer regime while increase in Eckert number produces heat energy within the fluid layers. Finally, the validation of the present problem is done by comparing with previous works and was in perfect agreement.

This publication has 20 references indexed in Scilit: