Characterizations and Significantly Enhanced Dielectric Properties of PVDF Polymer Nanocomposites by Incorporating Gold Nanoparticles Deposited on BaTiO3 Nanoparticles

Abstract
Poly(vinylidene fluoride) (PVDF) nanocomposites were fabricated by incorporating BaTiO3 nanoparticles (particle size of ~100 nm, nBT), which were deposited by Au nanoparticles (nAu) with an average particle size of 17.8 ± 4.0 nm using a modified Turkevich method. Systematic characterizations on the synthesized nAu-nBT hybrid nanoparticles and nAu-nBT/PVDF nanocomposites with different contents of a filler were performed. The formation of nAu-nBT hybrid nanoparticles was confirmed with the calculated nAu:nBT ratio of 0.5:99.5 wt.%. The homogeneous dispersion of nAu and nBT in the PVDF polymer was obtained due to the interaction between the negative surface charge of the nAu-nBT filler (compared to that of the nBT) and polar β-PVDF phase, which was confirmed by the zeta potential measurement and Fourier-transform infrared spectroscopy, respectively. A significantly increased dielectric permittivity (ε′ ~ 120 at 103 Hz) with a slight temperature-dependent of <±15% ranging from −20 to 140 °C was obtained. Notably, a low loss tangent (tanδ < 0.08) was obtained even at a high temperature of 140 °C. Therefore, incorporating a PVDF polymer with nAu-nBT hybrid nanoparticles is an attractive method to improve the dielectric properties of a PVDF polymer for dielectrics applications.
Funding Information
  • Basic Research Fund of Khon Kaen University (-, -, N41A640084, -)