DNA or Protein Methylation-Dependent Regulation of Activator Protein-1 Function

Abstract
Epigenetic regulation and modification govern the transcriptional mechanisms that promote disease initiation and progression, but can also control the oncogenic processes, cell signaling networks, immunogenicity, and immune cells involved in anti-inflammatory and anti-tumor responses. The study of epigenetic mechanisms could have important implications for the development of potential anti-inflammatory treatments and anti-cancer immunotherapies. In this review, we have described the key role of epigenetic progression: DNA methylation, histone methylation or modification, and protein methylation, with an emphasis on the activator protein-1 (AP-1) signaling pathway. Transcription factor AP-1 regulates multiple genes and is involved in diverse cellular processes, including survival, differentiation, apoptosis, and development. Here, the AP-1 regulatory mechanism by DNA, histone, or protein methylation was also reviewed. Various methyltransferases activate or suppress AP-1 activities in diverse ways. We summarize the current studies on epigenetic alterations, which regulate AP-1 signaling during inflammation, cancer, and autoimmune diseases, and discuss the epigenetic mechanisms involved in the regulation of AP-1 signaling.
Funding Information
  • National Research Foundation of Korea (2017R1A6A1A03015642)