Propagation of the 3D Crystallization Front in a Strongly Nonideal Dusty Plasma

Abstract
We have analyzed the data obtained at the PK-3 Plus Laboratory onboard the International Space Station from analysis of the crystallization front propagation in a dusty plasma. We have developed the "axial" algorithm for identifying "crystal-like" particles, which makes it possible to recognize different crystalline domains and their surface. We have proposed a method for determining the 3D front velocity, presuming the existence of a small region of the domain surface, which propagates along a certain line perpendicular to this region. It is shown that the front velocity is almost independent of time and amounts to about 60 mu m/s. We have proposed a theory of the crystallization front propagation in the dust cloud under the assumption that the flux of particles being crystallized is proportional to the difference in the self-diffusion coefficients for the liquid and crystalline phases. The upper estimate of the front velocity correlates with the results of processing of experimental data.