Varroa destructor mites regularly generate ultra-short, high magnitude vibrational pulses.

Abstract
The ectoparasitic mite Varroa destructor is considered one of the greatest threats to the honeybee Apis mellifera. To successfully manage mite populations residing in the colony, beekeepers must stay informed of infestation levels in their apiaries. The remote, non-destructive detection of Varroa mites in honeybee hives would therefore be highly desirable. Here we show that an ultra-sensitive (1000 mV/g) accelerometer can detect vibrational waveforms originating from one individual mite. We further focus on a commonly observed pulsing behaviour never before described, characterising its physical features, periodicity and strength. The spectral features of the detected pulses strongly depend on the substrate on which they are produced. The characteristics of the vibrational pulse, particularly its repeatability and strength, indicate that mite vibrations could be successfully detected in a fully populated honeybee hive. These features, combined with the remarkably high varroa muscular power output (up to 810nW) indicate that this pulse may be functional for the mite. Our results uncover an exciting novel behaviour and provide a foundation for the remote detection of mites in beehives using vibration capture.