Laser-Induced Forward Transfer with Optical Stamp of a Protein-Immobilized Calcium Phosphate Film Prepared by Biomimetic Process to a Human Dentin

Abstract
The rapid and area-specific printing of calcium phosphate with superior biocompatibility and osteoconductivity is a useful technique for the surface functionalization of biomedical devices. We recently demonstrated the laser-induced forward transfer (LIFT) of a brittle calcium phosphate film onto a soft and shock-absorbing polydimethylsiloxane (PDMS) substrate. In this work, a new LIFT using an optically transparent PDMS-coated stamp, which we hereafter call LIFT with optical stamp (LIFTOP), was introduced to achieve the transfer of brittle films to harder substrates. Cell adhesion protein fibronectin-immobilized calcium phosphate films (Fn-CaP) were prepared on the optical stamp through a biomimetic process. Then, the irradiation of a single laser pulse transferred the Fn-CaP film from the optical stamp onto relatively hard substrates, polyethylene terephthalate and human dentin. As a result of this LIFTOP process, Fn-CaP microchips with a shape corresponding to the laser beam spot were printed on the substrates. Cross-sectional observation of the interface between the Fn-CaP microchip and the dentin substrate revealed good attachment between them without obvious gaps for the most part.