Assisting target recognition through strong turbulence with the help of neural networks

Abstract
Imaging and target recognition through strong turbulence is regarded as one of the most challenging problems in modern turbulence research. As the aggregated turbulence distortion inevitably degrades remote targets and makes them less recognizable, both adaptive optics approaches and image correction methods will become less effective in retrieving correct attributes of the target. Meanwhile, machine learning (ML)-based algorithms have been proposed and studied using both hardware and software approaches to alleviate turbulence effects. In this work, we propose a straightforward approach that treats images with turbulence distortion as a data augmentation in the training set, and investigate the effectiveness of the ML-assisted recognition outcomes under different turbulence strengths. Retrospectively, we also apply the recognition outcomes to evaluate the turbulence strength through regression techniques. As a result, our study helps to build a deep connection between turbulence distortion and imaging effects through a standard perceptron neural network (NN), where mutual inference between turbulence levels and target recognition rates can be achieved. (C) 2020 Optical Society of America