Abstract
In this study, we investigate the Kotzinian-Mulders effect under semi-inclusive deep inelastic scattering (SIDIS) within the framework of transverse momentum dependent (TMD) factorization. The asymmetry is contributed by the convolution of the Kotzinian-Mulders function g(1T) and the unpolarized fragmentation function D-1. As a TMD distribution, the Kotzinian-Mulders function in the coordinate space in the perturbative region can be represented as the convolution of the C-coefficients and the corresponding collinear correlation function. The Wandzura-Wilczek approximation is used to obtain this correlation function. We perform a detailed phenomenological numerical analysis of the Kotzinian-Mulders effect in the SIDIS process within TMD factorization at the kinematics of the HERMES and COMPASS experiments. We observe that the obtained x(B)(-), z(h)(-), and P-h perpendicular to-dependent Kotzinian-Mulders effects are basically consistent with the HERMES and COMPASS measurements. We also make predictions at EIC and EicC kinematics.