Sucrose transport and metabolism control carbon partitioning between stem and grain in rice

Abstract
Source–sink relationships are key to overall crop performance. Detailed understanding of the factors that determine source–sink dynamics is imperative for the balance of biomass and grain yield in crop plants. We investigated the differences in source–sink relationships between a cultivated rice, Oryza sativa cv. Nipponbare, and a wild rice, Oryza australiensis, which show striking differences in biomass and grain yield. Oryza australiensis, which accumulates a higher biomass, not only showed higher photosynthesis per unit leaf area but also exported more sucrose from leaves compared with Nipponbare. However, grain features and sugar content suggested limited sucrose mobilization to grains in the wild rice due to vasculature and sucrose transporter functions. Low cell wall invertase activity and high sucrose synthase cleavage activity followed by higher expression of cellulose synthase genes in O. australiensis stem indicated that it utilized photosynthates preferentially for the synthesis of structural carbohydrates, resulting in high biomass. In contrast, source–sink relationships favored high grain yield in Nipponbare via accumulation of transitory starch in the stem, due to higher expression of starch biosynthetic genes, which is mobilized to panicles at the grain filling stage. Thus, vascular features, sucrose transport, and functions of sugar metabolic enzymes explained the differences in source–sink relationships between Nipponbare and O. australiensis.
Funding Information
  • Ministry of Science and Technology

This publication has 72 references indexed in Scilit: