Abstract
A great variety of tunable multifunctional materials can be produced by combining nanoparticles and liquid crystals. Typically, the tunability of such soft nanocomposites is achieved via external electric fields resulting in the field-induced reorientation of liquid crystals. This reorientation can be altered by ions normally present in liquid crystals in small quantities. In addition, nanomaterials dispersed in liquid crystals can also affect the behavior of ions. Therefore, an understanding of ionic phenomena in liquid crystals doped with nanoparticles is essential for future advances in liquid crystal-aided nanoscience and nanotechnology. This paper provides an overview of the ionic effects observed in liquid crystals doped with nanomaterials. An introduction to liquid crystals is followed by a brief overview of nanomaterials in liquid crystals. After giving a basic description of ions in liquid crystals and experimental methods to measure them, a wide range of ionic phenomena in liquid crystals doped with different types of nanomaterials is discussed. After that, both existing and emerging applications of tunable soft materials made of liquid crystals and nanodopants are presented with an emphasis on the role of ionic effects in such systems. Finally, the discussion of unsolved problems and future research directions completes the review.