New Search

Export article
Open Access

Discovering Customer Paths from Location Data with Process Mining

Onur Dogan
European Journal of Engineering Science and Technology , Volume 3, pp 139-145; doi:10.33422/ejest.v3i1.250

Abstract: Customer paths can be used for several purposes, such as understanding customer needs, defining bottlenecks, improving system performance. Two of the principal difficulties depend on discovering customer paths due to dynamic human behaviors and collecting reliable tracking data. Although machine learning methods have contributed to individual tracking, they have complex iterations and problems to produce understandable visual results. Process mining is a methodology that can rapidly create process flows and graphical representations. In this study, customer flows are created with process mining in a supermarket. The differences between the paths of customers purchased and non-purchased are discussed. The results show that both groups have almost similar visit duration, which is 87.5 minutes for purchased customers and 86.6 minutes for non-purchased customers. However, the duration of aisles is relatively small in non-purchased customer flows because customers aim to return or change the item instead of buying.
Keywords: duration / Customers / Flows / minutes / discovering / Purchased / human behaviors and collecting / Customer Paths

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

Share this article

Click here to see the statistics on "European Journal of Engineering Science and Technology" .
Cited by 1 articles
    Back to Top Top