Abstract
The band structure and quantum phase transition of graphene/hexagonal boron nitride heterojunction (h-BN) under local potentials are studied by the tight-binding method. The result shows that the graphene layer is in the quantum spin Hall state and the h-BN layer is in the insulating state when the intrinsic spin-orbit coupling strength of the graphene layer is given. As the local potential of the graphene layer increases, the system will change from a quantum spin Hall state to a semiconductor state. New gapless edge states can be generated by tuning the local potential of the h-BN layer, so that the quantum spin Hall state of the graphene layer becomes the quantum spin Hall state composed of the edge states within and between layers.