Projection of Wind Energy Potential over Northern China Using a Regional Climate Model

Abstract
With the purpose of achieving carbon emission reduction targets, the wind power industry has developed rapidly in recent years. Wind power is greatly affected by climate change, and the increase or decrease of wind speed directly affects wind energy production. Based on the numerical simulation results from a high-resolution (~ 25 km) regional climate model PRECIS, we analyze the changes of future wind speed and wind power potential in the "Three North" (TN) region in China. Firstly, we verify whether the PRECIS can capture the current spatiotemporal patterns in simulating the wind speed compared with observation (CN05.1). The results show PRECIS has a good ability in reproducing the spatiotemporal patterns of wind speed in the eastern part of the TN region, but still has great uncertainty in the northwest. In the future, the projected wind power density in the TN region will increase by about 0.7% in the middle of the 21st century, but will drop significantly in the end of the century (about −3.32%). Furthermore, Wind power density will increase significantly in winter. However, the wind speed in spring and summer will generally decrease. It is predicted that most of the Northwest (NW) and North (N) will have strong inter-annual variability in the middle of this century, and will be more stable at the end of this century. It should be noted that the potential of wind energy in Northeast (NE) will grow steadily in this century, which will have certain guiding significance for future wind power planning in this region.
Funding Information
  • National Key Research and Development Plan of China (2018YFE0208400; 2018YFE0196000)