Study on PVL, blaOXA-23 and blaOXA-51 Genes in Drug Resistant Staphylococcus aureus Causing Surgical-Sites and Traumatic Wounds Infections, Sudan

Abstract
Background: The characteristics of Staphylococcus aureus that made it the most important cause of wound infections are environmental spread antimicrobials resistance and virulence. Absence of molecular detection of drug resistance and virulence factors in many developing countries limits the epidemiological information. This study conducted to identify PVL virulence gene, and blaOXA-23 and blaOXA-51 drug resistance genes of Staphylococcus aureus isolated from surgical-sites infections (SSIs) and traumatic wounds. Methods: A cross-sectional study was conducted from 2019 to 2021, in which 70 cefepime resistant Staphylococcus aureus were used, the strains were isolated from patients of SSIs and traumatic wounds admitted to the department of General Surgery in Wad Medani Teaching Hospital. Mannitol salt agar was used for primary culture followed by biochemical identification and Kirby Bauer susceptibility testing. Single and multiplex PCR protocols performed for bacterial confirmation and target genes detection. Results: Staphylococcus aureus strains from SSIs constituted 56% (39/70) from which 41% (16/39) possessed PVL gene while 42% (13/31) of wound infections strains were positive for PVL gene. Presence of PVL gene was significantly associated with resistance to meropenem (P. value 0.023) and ceftriaxone (P. value 0.037). blaOXA-23 was significantly detected with resistance to meropenem, augmentin and ceftriaxone. While blaOXA-51 was significantly identified among Staphylococcus aureus strains that showed resistance to meropenem and ciprofloxacin. Conclusion: This is the first study in Sudan that identified blaOXA-23 and blaOXA-51 in Staphylococcus aureus and correlated them to resistance to commonly used antimicrobials. Meropenem resistant Staphylococcus aureus were significantly positive for PVL, blaOXA-23 and baOXA-51 genes.